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Abstract

Irradiation-induced diffusion in finite, two-phase systems is analyzed and applied to the geometry of dispersion fuels of the type used
in research and test reactors. A fissioning sphere irradiates the surrounding medium in which fission also takes place. In place of the
fission rate used in conventional irradiation-induced diffusion coefficient (D*) correlations, the energy deposition rates due to electronic
and nuclear stopping of the fission fragments are separated. The former is used to drive the point-defect contribution to D* and the latter
is the source of the thermal-spike component. This separation accounts for the preponderance of electronic energy loss early in the track
of a fission-fragment and the dominance of nuclear stopping near the end of the range. This distinction accounts for the difference in the
relative intensities of these two energy loss modes in a fission-fragment that exits one phase and deposits energy in an adjacent medium in
which D* is to be determined. Fission-fragment stopping powers and projected ranges are obtained from SRIM software, thereby per-
mitting extraction of the two types of energy deposition rates from the fission rate. As expected, the ratio of nuclear stopping to electronic
stopping in the medium surrounding a fissioning inclusion increases with distance from the interface. The effective irradiation-enhanced
diffusivity for use in the diffusion equation depends upon two parameters: the fraction of D* in an infinite, homogeneous solid attribut-
able to nuclear stopping and the ratio of the volumetric fission rates in the dispersed and continuous phases.
� 2007 Published by Elsevier B.V.
1. Introduction

Most research and test reactors around the world
operate on dispersion fuels, by which is meant a two-phase
mixture of spherical particles a U, Mo alloy (the dispersed
phase) in a matrix of a high-thermal conductivity material
such as aluminum (the continuous phase). Another exam-
ple is the fuel of TRIGA reactors, in which uranium
spheres constitute the dispersed phase embedded in a con-
tinuous phase of zirconium hydride. Because of prolifera-
tion concerns, there is an ongoing effort to replace fuels
using high-enriched uranium (HEU, �90% 235U) with
low-enriched uranium (LEU, <20% 235U). The technical
challenge in realizing this switch is packing the same
amount of 235U formerly in HEU fuel into fuel utilizing
LEU without changing the dimensions of the fuel element
and maintaining the same power density. Early TRIGA
reactors, for example, utilized a dispersion fuel consisting
of 8 wt% HEU in a matrix of zirconium hydride. After con-
version, the fuel contains 45 wt% LEU.
0022-3115/$ - see front matter � 2007 Published by Elsevier B.V.
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One of the problems encountered in developing the U,
Mo/Al fuel is reaction between the dispersed phase and
the matrix phase. The irreversible reaction

ðU;MoÞ þ 3Al! ðU;MoÞAl3

takes place at the surface of the U, Mo sphere, which is
converted to the aluminide reaction product. The kinetics
are believed to be controlled by the diffusion of Al from
the matrix through the reaction product to the interface
between the shrinking U, Mo sphere and the growing
reaction-product annulus around it (Fig. 1). The aluminide
has a substantially-lower thermal conductivity than either
of the metals, and its presence causes the U, Mo to heat
up and release fission-gas faster than in the absence of
the reaction product. Because of the intense fission-frag-
ment (ff) bombardment of the aluminide and the low tem-
perature (<�300 �C), Al transport in the reaction product
is due entirely to irradiation diffusion; thermally-activated
diffusion is negligible.



Table 1
Radiation damage in UO2 (from Refs. [2,3])

Property Light ff Heavy ff

Energy, Eff, MeV 95 67
Range in UO2, lm 9 7
% of Eff into nuclear stopping 3 5
O displacement energy, eV 20 20
U displacement energy, eV 40 40
O defects produced 2.8 · 104 4.5 · 104

U defects produced 1.0 · 104 1.6 · 104

Fig. 1. U, Mo spheres dispersed in an aluminum matrix (left) with (U, Mo)Al3 reaction product (right). (Courtesy of the RERTR Program – Idaho Nat’l
Laboratory and Argonne Nat’l Laboratory.)

1 Si = �(dEff/dx)i, where i = e or n.
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It is generally accepted that there are two components of
the irradiation diffusion coefficient (D*), each associated
with a mode of fission damage. A frequently-used correla-
tion contains two terms reflecting this distinction [1].

D� ¼ D�e þ D�n; ð1Þ

where D�e is the contribution attributed to electronic stop-
ping in the thermal-spike created by a fission-fragment (ff)
and D�n is associated with vacancies and interstitials created
by knock-on cascades produced by nuclear stopping. These
point defects remain in the lattice long after the fission event.

The objectives of this paper are to: (i) quantitatively
associate the thermal-spike component with electronic
stopping and the point-defect term with nuclear stopping;
(ii) calculate each component of D* in a spherically-sym-
metric, two-phase geometry; and (iii) analyze the effect of
the position-dependent D* on the kinetics of a diffusion-
controlled reaction in the same geometry.

1.1. Radiation-induced diffusion

In an infinite, homogeneous medium, both components
of D* are expressed as functions of the fission rate _F . In this
case, the portion of fission energy appearing as electronic
excitation is the same everywhere, so the intensity of elec-
tronic-energy deposition is simply proportional to _F (the
same is true for energy deposition by nuclear stopping).
In a two-phase medium, however, the separation must be
made explicit. This is accomplished by relating each mode
of energy deposition to the stopping power for that mode.

Fission energy is partitioned into the two energy deposi-
tion rates

Eff
_F ¼ _Ee þ _En; ð2Þ

where Eff is the birth-energy of a ff and _Ee and _En are the
rates per unit volume of energy deposition by electronic
stopping and nuclear stopping, respectively. In Appendix
A, the relations of these quantities to the stopping powers
are shown to be

_Ee ¼ _F
Z l

0

Sedr and _En ¼ _F
Z l

0

Sndr; ð3Þ
where Se and Sn are the energy-dependent stopping
powers1 and l is the range of the ff. Characteristics of the
fission fragments produced by 235U fission and their effects
on the UO2 lattice (for which data are most plentiful) are
given in Table 1. The third row of this table indicates that
the nuclear stopping contribution is 3–5% of the total en-
ergy deposition rate.

In the dispersion fuel both D�e and D�n are position-
dependent; a ff created in the U, Mo sphere (region 1)
deposits some of its energy in this phase, but the balance
in the aluminide annulus (region 2). Since electronic stop-
ping is dominant at high energies and nuclear stopping at
low energies, the ratio of the rates of energy deposition
by the two mechanisms at the end of the range is different
from that close to the fission event.

The fission rates in the two regions are _F 2 and _F 1,
respectively. The calculation is broken into two parts.
The first is the contribution of ffs originating in region 1
that stop in region 2. The second is the contribution of
ffs originating in region 2 that deposit all or part of their
energy in this phase. The effect of ffs emanating from the
sphere is limited to an annulus in region 2 of a thickness
equal to the range of ffs in the latter material (l2). If the
thickness of the reaction product layer is greater than l2,
region 2 is effectively infinite.

The method consists of replacing the fission rate in the
correlation of D* [1] by the electronic-energy deposition
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rate _Ee in the thermal-spike component and by the nuclear
energy deposition rate _En in the point-defect term.

1.2. The thermal-spike or electronic stopping mechanism

As discussed in Refs. [2–5], the principal effect of irradi-
ation on diffusivities is due to the ‘thermal-spike’ that
accompanies the track of a fission-fragment. The mecha-
nism is electronic excitation by the moving ion, which
results in intense heating in the immediate vicinity of the
fission track as the electrons return to their ground states.
Because of the locally high temperatures, ordinary ther-
mally-activated diffusion of all species in the material is
increased for a short period in a small volume. The pres-
sure pulse that accompanies the volume change due to
heating (and probably melting) a small rod of the material
also contributes to the enhanced mobility. In UO2, calcula-
tions show that the transient temperature distribution
exceeds the melting point over a volume of �1.5 ·
10�16 cm3 for about 2 · 10�11 s. Averaged over the range
of the ff, melting occurs out to a radius of 2.4 nm around
the ff track.

Experiments show that the diffusivity enhancement of U
in UO2, UC, and UN due to electronic excitation is pro-
portional to the fission rate

D�e ¼ A� _F ; ð4Þ
where the diffusivity is in cm2/s, the fission density in
cm�3 s�1. The constant of proportionality in Eq. (4) de-
pends on the material, and probably the diffusing species
as well. In ceramics, the latter include the cations, the
anions and any impurity atoms. For U in UO2 A = 1.5 ·
10�29 cm5 [4,5]. For U in UC, A is about a fifth of the
UO2 value, and A for U in UN about a tenth of that for
UO2. The relative magnitudes of these A values vary inver-
sely with the thermal conductivities, an observation that
supports the thermal-spike model; the higher the thermal
conductivity, the more rapidly heat produced by electronic
stopping is dissipated and the lower are the temperatures
around the ff track. The comparable quantities for the coef-
ficient A in the nonmetals in these ceramics have not been
reported.

For a typical radiation-produced impurity (Xe in UO2),
A = 1.5 · 10�30 cm5, or an order of magnitude smaller than
A for U in UO2. Assuming this value of A, Eq. (4) becomes

D�e ¼ 1:5� 10�30 _F : ð4aÞ
For a fission rate of 4 · 1014 cm�3 s�1, this formula gives
D�e ¼ 6� 10�16 cm2=s.

1.3. The ‘point-defect’ or nuclear stopping mechanism

The augmented population of vacancies and interstitials
remaining after the fission event arises from nuclear stop-
ping, whereby energy is transferred to lattice atoms by scat-
tering collisions with the moving ff. Table 1 shows that the
number of point defects produced is proportional to the
percentage of the initial ff energy that goes into nuclear
stopping. Some of the vacancies and interstitials produced
by ion–atom collisions escape recombination and remain in
the solid after the cascade has subsided. Their presence
accelerates diffusion of all species whose migration mecha-
nism involves point defects.

Because of the low temperatures involved, removal of
these point defects is dominated by recombination, with
negligible trapping at microstructural sinks. The point-
defect balances for vacancies and interstitials are identical.
By analogy to neutron-irradiated metals [Sec. 19.5.10] of
Ref. [6], the point-defect balances become

K ¼ krecxVxI and xV ¼ xI; ð5Þ

where K is the defect production rate in units of displace-
ments-per-atom-per-second, or dpa/s. K is related to the
fission rate by

K ¼ a _F X ffi a _F a3
o ð6Þ

a is the number of surviving point-defect pairs per fission
event, for which a low value �104 is given in Table 1. Other
estimates produce values as high as 5 · 105 [1]. X is the vol-
ume of an atom (for a metal) or a molecule (for a ceramic).
In Eq. (6), it is approximated by the cube of the lattice
parameter, ao.

xI and xV in Eq. (5) are the interstitial and vacancy frac-
tions on the lattice sites. krec is the rate constant for recom-
bination [Sec. 13.4.2] of Ref. [6]:

krec ¼
zDI

a2
o

¼ zjI; ð7Þ

where z is the number of lattice sites in which annihilation
of a vacancy by an intersititial is certain. Because DI� DV,
the mechanism assumes stationary vacancies and mobile
interstitials. Thus, only the diffusivity of the interstitials,
DI, appears in Eq. (7). To arrive at the second form of krec

in Eq. (7), the interstitial diffusivity has been expressed by
the Einstein equation, a2

ojI, where ao is the jump distance
(assumed equal to a lattice constant) and jI is the jump fre-
quency of the interstitial [see Sec. 7.4.2] of Ref. [6] for the
analogous derivation of DV]. According to absolute reac-
tion-rate theory [Sec. 7.5] of Ref. [6], the interstitial jump
frequency can be written as:

jI ¼ mI expðsm
I =kÞ expð�em

I =RT Þ ð8Þ

sm
I and em

I are the entropy and activation energy associated
with the motion of the point-defect and mI is the interstitial
vibration frequency in its equilibrium site. R is the gas
constant.

Migration of the atoms (cation, anion, or impurity)
most commonly occurs by the vacancy mechanism, so the
nuclear stopping component of D* is expressed by

D�n ¼ a2
ojVxV; ð9Þ

where jV is the jump frequency of the vacancy from a lattice
site into an adjacent one. It is given by Eq. (8) with sub-
script I replaced by V. The site fraction of vacancies, xV,
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is the probability that a vacant site is next to a diffusing
atom. With xV obtained from Eqs. (5)–(8), the nuclear
stopping contribution to the diffusivity becomes

D�n ffi
ffiffiffi
a
z

r
a7=2

o

ffiffiffi
m
p

exp �
em

V � 1
2
em

I

RT

� � ffiffiffiffi
_F

p
: ð10Þ

The activation entropies are assumed to be zero, or to can-
cel and the vibration frequencies of the interstitials and
vacancies are taken to be equal. To obtain a representative
value of D�n the following quantities are assumed

m ¼ 1013 s�1; em
I ¼ 10 kcal=mol; em

V ¼ 20 kcal=mol;

T ¼ 600 K; a ¼ 5� 105; z ¼ 10;

ao ¼ 4� 10�8 cm; _F ¼ 4� 1014 cm�3 s�1:

Substituting these values into Eq. (10) gives
D�n � 7� 10�16 cm2=s, which is of the same order of magni-
tude as D�e . However, in view of the sensitivity of Dn to
several of the parameters in Eq. (10) (particularly the
migration activation energies, temperature and jump dis-
tance), the above value of this diffusivity component is very
uncertain. For the purpose of the present analysis, it
suffices to express Eq. (10) by

D�n ¼ B
ffiffiffiffi
_F

p
ð11Þ

with B = 3.5 · 10�23 cm7/2 s�1/2. Note that the effect of
temperature in Eq. (10) has been neglected. This term
may have been responsible for the temperature effect on
reaction-product growth evident in Fig. 1.
2 Available free on the web at SRIM.org.
1.4. Replacement of the fission rate by the energy

deposition rates

Calculation of D�e and D�n proceeds by replacing _F in
Eqs. (4) and (11) with the energy deposition rates using
Eq. (3). for electronic stopping Eq. (4) becomes

D�e ¼ A0 _Ee ð12Þ
with

A0 ¼ A
Z l

0

Sedr
� ��1

: ð13Þ

For nuclear stopping Eq. (11) becomes

D�n ¼ B0
ffiffiffiffiffiffi
_En

q
ð14Þ

with

B0 ¼ B
Z l

0

Sndr
� ��1=2

: ð15Þ

In order to apply Eqs. (12) and (14), the coefficients A and
B given or estimated in Sections 1.1 and 1.3 are used. The
integrals of the stopping powers for the 67 MeV ff in (U,
Mo)Al3 are 60 MeV and 7 MeV for electronic and nuclear
stopping, respectively. This information suffices to calcu-
late the coefficients A 0 and B 0 in Eqs. (13) and (15):
A0 ¼ 2:5� 10�32 cm5=MeV

B0 ¼ 1:3� 10�23 cm�7=2 s�1=2=MeV1=2: ð16Þ
1.5. Use of SRIM

SRIM is an extraordinarily useful piece of software2

that describes the consequences of the entry of a high-
energy ion into a solid [7]. The atomic species in the solid
are recognized but the crystal structure is not; the solid
has the correct density but is amorphous. SRIM provides
two options. The main portion (called TRIM) follows the
displacements caused by the primary knock-on atoms
(PKAs) in varying degrees of detail. A subsidiary part of
the code calculates the properties of the incident ion as it
slows down in the solid. This is the part of SRIM that is
used in the present study.

An abbreviated example of the SRIM output is shown
in Table 2. As functions of ion energy, the table lists the
electronic and nuclear stopping powers, from which the
integrals in Eq. (3) were obtained. The projected range pro-
vided by SRIM is best visualized by the following diagram:
An ion with initial energy Eff penetrates a distance x in a
solid, where its energy is Ex. At this energy, the SRIM table
gives the projected range PR(Ex). This quantity is related
to the range of the full-energy particle, l, (the last entry
of the 4th column) and the distance traveled by

l ¼ xþ PRðExÞ: ð17Þ
If the distance x is known, entry at l � x in the 4th column
is the projected, or remaining, range of the particle. How-
ever, by reading across to the 1st column, the energy of the
ion at penetration distance x is obtained. For example, if
the ion initially at 67 MeV moves a distance of 2 lm, its en-
ergy is 38.4 MeV. If the medium to the right of location x is
different from that to the left, the above energy calculation
still applies, but the projected range at x now requires use
of the stopping properties of the different medium.

Care is needed for the units. In the calculations that
follow, all of the length units are made dimensionless by
dividing by l1, the range of ffs in region 1 (the U, Mo
sphere). Therefore, the units of S must be MeV/length in
units to l1. All SRIM projected-range (PR) output (in
lm) is divided by l1. The stopping powers produced by
SRIM are in units of keV/lm. Multiplying by 10�3 con-
verts keV to MeV and by l1 (in lm) changes lm to the
length unit used for all other dimensions. The net result is

S ðMeV per length in units of l1Þ
¼ l1 ðlmÞ � 10�3 � S ðfrom SRIMÞ:

http://SRIM.org


Table 2
Abbreviated SRIM stopping output – Xe in (U0.8Mo0.2)Al3

SRIM output: xenon in U–Mo–Al
Ion = xenon [54], mass = 132 amu
Target density = 6.9 g/cm3

Target composition

Atom name Atomic no. Atomic percent

U 92 20
Mo 42 5
AI 13 75

Ion energy
(MeV)

dE/dx Elec.
(keV/lm)

dE/dx

Nuclear
Projected range
(lm)

0.01 120 1250 0.007
0.03 207 2265 0.013
0.05 268 2558 0.018
0.08 339 2789 0.025
0.12 415 2942 0.033
0.16 479 3016 0.041
0.2 535 3048 0.050
0.3 668 3048 0.069
0.5 867 2928 0.11
1.0 1119 2568 0.21
2.0 1579 2055 0.43
5.0 2818 1346 1.09

10 4427 902 2.04
20 7363 573 3.46
25 8695 491 4.02
30 9896 431 4.51
35 10970 385 4.96
40 11920 350 5.37
45 12780 320 5.76
50 13550 296 6.12
55 14250 276 6.47
60 14900 258 6.80
67 15720 237 7.24

Fig. 2. Geometries of zones supplying ffs to point F.
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2. Energy deposition rates in the two regions

While an unlimited number of 2-phase, finite medium
geometries can be concocted, the sphere in an infinite med-
ium adequately represents the dispersion fuel described in
the introduction. The objective here is not to cover all pos-
sible geometries and conditions that are pertinent to the
analysis of this configuration, which include sphere size rel-
ative to ff range, relative fission rates in the two phases and
thickness of the annular ‘infinite’ medium surrounding the
sphere. Rather the aim is to demonstrate for a single geom-
etry and one set of conditions how the electronic and
nuclear energy depositions rates, and hence the modes of
irradiation diffusion that they drive, differ from that of
an infinite medium.

The geometry consists of a sphere of radius R (region 1)
in which the ff range is l1 embedded in a second phase
(region 2) in which the ff range is l2. Fission occurs in both
regions, but at different intensities. The energy deposition
rates in region 2 at a variable distance q from the center
of the sphere (designated as point F) are to be determined.
Finite-geometry effects are active only to a distance R + l2

from the sphere center; further out, the usual infinite med-
ium analyses apply.
To determine D* in region 2, the rates of electronic and
nuclear energy deposition in this region need to be calcu-
lated. For ffs generated in the sphere, most of the energy
loss in this region is due to electronic stopping; the major
part of the nuclear stopping portion of the ff energy is
deposited at the end of the ff track, which is in region 2.
Because of this imbalance, the distinction between elec-
tronic energy loss and nuclear energy loss must be made
explicit, as it is in Eqs. (12) and (14). The energy deposition
rates _Ee and _En at a point in the region 2 can be calculated
from the electronic and nuclear stopping powers Se and Sn.
This procedure is described below for ffs originating in the
sphere but stopping in the surrounding medium and for ffs
originating and stopping in the latter. The analysis consists
mainly of detailed geometrical calculations coupled with
application of SRIM stopping powers and projected
ranges.

The first geometrical problem is the distinction between
near and far distances from the center of the sphere repre-
senting region 1. This is best shown in Fig. 2 for these two
cases. The switch from one diagram to the other occurs at

q� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l2

2

q
.

2.1. q > q* (upper diagram in Fig. 2)

At q*, the angle between R and l2 at their intersection
on the sphere surface is 90�. For larger values of q, region
2 consists of two zones feeding point F: zone 2A is an imag-
inary sphere of radius l2 minus the cone with a circular
base, where the real and imaginary spheres intersect. This



Table 3
Limits for the radial and angular integrals of the stopping powers

Zone R 6 q 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l2

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ l2

2

q
6 q 6 Rþ l2

(cosu)min (cosu)max rmin rmax (cosu)min (cosu)max rmin rmax

1 X W Q� Q+ Y 1 Q� Z

W 1 Q� Z

2A �1 X 0 l2 �1 Y 0 l2

2B X 1 0 Q� Y 1 0 Q�
2C X W Q+ U – – – –

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2=q2

p
:

Y ¼ ðl2
2 þ q2 � R2Þ=2ql2:

Q� ¼ q cos u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � q2 sin2 u

q
:

Z = Q� + 1 � PR1(EK); PR2(EK) = Q� (solve for EK then Z).

W ¼ 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � R2 þ 1

4
½1� PR1ðE KÞ	2

q
¼ q2�R2þ½PR2ðEKÞ	2

2q½ PR2ðEKÞ	 ; ðsolve for EKthen W Þ:
U = l2 � PR2(EH) + Q+; PR2(EK) = Q� (solve for EK); PR1(EH) = PR1(EK) + Q+ � Q�(solve for EH then U).

Distances are in units of l1; ff energy in MeV
R = radius of region 1.
q = distance from center of region 1.
l2 = ff range in region 2.
u = angle from horizontal with origin at point F.
EK = ff energy upon entering region 2 from region 1.
EH = energy of ff entering region 1 from region 2.
PRi(E) = projected range of ff of energy E in region i.
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cone, whose base is a spherical cap, is designated zone 2B.
Region 2 needs to be subdivided into these two zones to
account for the portion of the imaginary sphere of radius
l2 that is cut out by region 1. Zone 1 is the portion of
the sphere representing region 1 from which ffs can reach
point F. Its outer boundary depends on the ranges of the
ff in the two media.

2.2. q < q* (lower diagram in Fig. 2)

When the location of point F is less than q*, region 2
needs to be divided into three zones. Zones 2A and 2B
are the same as in the large-q case except that the cone ends
at the circle of tangency with the region-1 sphere. The third
zone, 2C, includes the portion of region 2 hidden from
direct view of point F, but from which ffs can reach this
point by passing through medium 1.

2.3. Energy deposition rates

The energy deposition rates at point F due to ffs emitted
from any of the zones in the diagrams of Fig. 2 are given by
the general formula

_E
_F
¼ 1

2

Z ðcos uÞmax

ðcos uÞmin

dðcos uÞ
Z rmax

rmin

Sdr: ð18Þ

The analysis consists of two determinations, details of
which are shown in Appendix B:

• The limits on the two integrals in Eq. (18). The results of
this part are summarized in Table 3. For each zone, the
integration limits are shown for small-q (columns 2–5)
and large-q (columns 6–9).

• The energy at a point F in region 2 of a ff created in one
of the 4 zones. This is determined by the distances trav-
eled by the ff in medium 1 and medium 2 and by the
slowing-down properties given by SRIM, as illustrated
in Table 2 for the U, Mo alloy constituting region 1.

If region 1 is made of the same material as region 2, the
infinite medium solution is recovered. This can be demon-
strated by replacing ‘1’ in the equation for Z by l2 and PR1

by PR2, wherever the former appears in the equations for
U and Z. With these substitutions, the sum of the five inte-
grals which correspond to the limits given in Table 3
reduces to Eq. (3).
3. Results

Application of the calculational method to U, Mo-in-Al
dispersion fuel is best illustrated by an example. In what
follows, all lengths are relative to the range of birth-energy
ffs in region 1. For a 67-MeV xenon fission-fragment in
U0.8Mo0.2, SRIM gives l1 = 4.16 lm. Relative to l1, the
radius of region 1 (the small sphere in Fig. 3) is chosen
as R = 1.2. According to SRIM, the range of the heavy ff
in the (U0.8,Mo0.2)Al3 reaction product (Region 2) is
7.24 lm, or l2 = 1.74 in units of l1. Adding this distance
to the radius of region 1, the maximum radial reach of
the ffs measured from the center of region 1 is 2.94 (in
dimensionless terms) or �12 lm. The fission rates in the
two media are _F 1 ¼ 2� 1014 cm�3 s�1 and _F 2 ¼ 5�



Fig. 3. Integration limits in region 1. All distances are in units of the ff range in U0.8Mo0.2.
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1013 cm�3 s�1. These correspond to the uranium densities
in the U, Mo alloy and the (U, Mo)Al3 compound. Ignor-
ing burnup effects, the U/Mo atomic ratio in both media
is 4.
Fig. 4. Electronic (top) and nuclear (bottom) components of the ratios of
the energy deposition rates to the fission rates in region 2 due to ffs
originating in region 1. The surface of region 1 is located at a relative
radius of 1.2.
3.1. Energy deposition in region 2 from fissions in region 1

The upper radial integration limits rmax for zone 1 are
shown in the polar plot of Fig. 3 for seven values of q,
the location of point F (represented by one of the vertical
lines on the right). The curves in Fig. 3 separate regions
from which a ff can reach a point F (to the right of the
curve) from the remainder of the sphere from which a ff
stops before reaching point F. The farthest from region 1
that a ff can penetrate region 2 is denoted by Fmax in
Fig. 3. This point is fed only by fissions occurring on the
surface of region 1 and emitted at a polar angle of zero.

The energy at point F (EF) of a ff created at any point
within zone 1 is determined by the method described in
Appendix B. From this value of EF, the stopping powers
Se and Sn are obtained from the second and third columns
of Table 2. These are then integrated over the range of r

and cosu in Eq. (18) to produce the energy deposition rate
relative to the fission rate.

Fig. 4 shows the variation of the two components of
_E= _F in region 2 with distance from the center of zone 1.
For comparison, the horizontal lines represent the infinite,
single-phase medium in which the electronic-to-nuclear
energy generated per fission is 60/7. In the finite-geometry,
the ratio of electronic-to-nuclear energy deposition
decreases from �10 close to the surface of region 1
(q = 1.2) to �2 at more remote distances. The reason is
straightforward; the ffs originating in region 1 lose energy
initially by electronic stopping in region 1, and at the end
of their range in region 2, slow down principally by nuclear
stopping.

3.2. Energy deposition in region 2 from fissions in both
regions

The energy deposition rates in region 2 due to fissions
originating in both regions are shown in Figs. 5 and 6,
along with the percentage due to ffs from region 1. The
total energy deposition rate for each mode is given by

_E ¼
_E
_F

� �
1

_F 1 þ
_E
_F

� �
2

_F 2: ð19Þ



Fig. 5. Electronic-energy deposition rates in region 2 and percentage due
to ffs from region 1.

Fig. 6. Nuclear energy deposition rates in region 2 and percentage due to
ffs from region 1.

Fig. 7. Irradiation diffusion coefficients in an annulus (region 2) due to
energy deposited by fissions in region 2 without fissions in region 1
( _F 1 ¼ 0) and with fissions in region 1 _F 1 ¼ 4 _F 2 The surface of the sphere is
at q = 1.2.
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The ratio ð _E= _F Þ1 for fissions region 1 is taken from Fig. 4
and ð _E= _F Þ2 for fissions in region 2 is obtained from compa-
rable information calculated for the three zones in region 2
(not shown).

The dashed curves in Figs. 5 and 6 show the variations
with distance from the sphere surface of the energy deposi-
tion rates from the two mechanisms from all accessible
fissioning zones. Both _Ee and _En decrease, but not as
markedly as the factor of 4 ratio of the fission rates in
the two media. Over the range of region-1 ffs, _Ee drops
by 30% but _En decreases by only 15%. This is consistent
with preponderance of electronic stopping at the beginning
of the ff track and nuclear stopping at the end of the track.
The ratio of the limiting values of the electronic-to-nuclear
dose rates from the same two figures (3.0 · 1015 

3.55 · 1014) is the same as the 60 
 7 ratio obtained
from the stopping power integrals (Section 1.4). Distances
for which q > 2.8 corresponds to medium 2 of infinite
extent.

The solid curves in Figs. 5 and 6 show the percentage of
the total energy deposition rate due to ffs originating in
region 1. At the sphere surface, �60% of the electronic
stopping dose rate and �45% of the nuclear stopping dose
rate are due to fissions in region 1. The balance of the dose
rates arise from ffs born in region 2. These ratios drop to
zero at a distance from the region-1 sphere surface equal
to the range of ffs in medium 2. Beyond this distance, the
solid receives fission energy only from region 2.

3.3. Diffusion coefficients

Armed with the two energy deposition rates from Figs. 5
and 6 (plus the analogous pair for the energy delivered to
region 2 from fissions in region 2), the two components
of the irradiation diffusivities can be calculated from Eqs.
(12) and (14). The constants in these formulas are given
by Eq. (16). In the results are displayed in Fig. 7, the rela-
tive magnitude of the two components of D* is not signif-
icant because of the very approximate value of B 0 used to
compute D�n.

If _F 1 ¼ 0, both D�e and D�n decrease upon moving radi-
ally inward. This is the result of the loss of medium 2 in
the volume occupied by the nonfissioning sphere.

For _F 1= _F 2 ¼ 4, D* increases as the surface of the sphere
is approached. The electronic component of D* at the
sphere surface (q = 1.2) is 40% greater than the bulk value
(q = 3). The corresponding enhancement of the nuclear
component is 15%. These relatively minor effects are due
largely to the compensating effect of the radial dependences
of the region 1 and region 2 components of the energy
deposition rates; that due to fissions in region 1 drops to
zero far from the surface of the sphere (Figs. 5 and 6), while
the contribution to _E at the sphere surface from fissions in
region 2 is still about 1/2 that in the bulk material.

3.4. Effect on a diffusion process

The result of interest is not the diffusion coefficients per
se, but their effect on the kinetics of diffusion-controlled
processes. For this purpose, the transport region is a spher-
ical annulus (region 2) of inner radius q = 1.2 and outer
radius q = 3.0. The latter is just beyond the range of ffs



Fig. 8. Effect of a fission in a sphere (region 1) on the solute absorption
flux from a surrounding medium (region 2).
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emitted from the inner sphere (region 1), so the irradiation
effects for q > 3 are those of an infinite medium. The
following diffusion problem in this geometry is posed.
The spherical annulus initially contains a specified concen-
tration of solute; at time zero, the concentration at the
inner surface is reduced to zero; the outer surface is a
zero-flux boundary. While this is an artificial problem,
the purpose is to demonstrate the effect of the position-
dependent D* in Fig. 7, the components of which are fitted
with the formulas:

D�e ¼ D�e1 expð�keðq� 1:2ÞÞ þ D�e2;

D�n ¼ D�n1 expð�knðq� 1:2ÞÞ þ D�n2:
ð20Þ

For _F 1 ¼ 4 _F , ke = 3.6 and kn = 1.0. The coefficients
D�e1 þ D�e2 and D�n1 þ D�n2 are the intercepts of the curves
at q = 1.2 and D�e2 and D�n2 are the large-q asymptotic val-
ues. The total diffusivity in region 2 is the sum of D�e and D�n

D� ¼ ðD�e1 þ D�n1Þ½ð1� f Þ � expð�keðq� 1:2ÞÞ þ f

� expð�knðq� 1:2ÞÞ þ g	: ð21Þ

The quantities f and g are

f ¼ D�n1

D�e1 þ D�n1

and g ¼ D�e2 þ D�n2

D�e1 þ D�n1

: ð22Þ

The parameter f is a measure of the importance of nuclear
stopping in the total irradiation diffusivity at the sphere
surface. The parameter g is a measure of the irradiation dif-
fusivity far from the sphere surface to D* at the sphere
surface.

In dimensionless form, the diffusion equation with the
diffusivity of Eq. (21) is

oC
os
¼ 1

q2

o

oq

�
q2 ð1� f Þ � expð�keðq� 1:2ÞÞ½

þ f � expð�knðq� 1:2ÞÞ þ g	 oC
oq

�
; ð23Þ

where C is the concentration and s ¼ ðD�e1 þ D�n1Þt=l2
1 is a

dimensionless time.3 The initial condition is C = 1 for all q,
and the boundary conditions are: C = 0 at q = 1.2 and oC/
oq = 0 at q = 3.0. The flux of solute to the central sphere is

flux ¼ ð1þ gÞ oC
oq

� �
q¼1:2

: ð24Þ

Fig. 8 compares the flux variation with time for cases with
and without fission in the central sphere. For the former
case, f = 0.5 and g = 5 and the flux at the surface is initially
somewhat higher than for the nonfissioning sphere, but
these reverse at a later time. The time-integrals of the fluxes
are practically equal in the two cases because the final time
is long enough to remove essentially all solute initially in
the region 2 annulus, irrespective of the magnitude of D*.
3 ðD�e1 þ D�n1Þ is the value for _F 1= _F 2 ¼ 4 in both cases.
4. Conclusions

Irradiation diffusion coefficients developed for infinite
homogeneous media have been modified for inhomoge-
neous two-phase media in which fission occurs in one or
both phases. To this end, D* is separated into two compo-
nents, D�e and D�n, representing contributions due to fission-
fragment energy deposition by electronic and nuclear
stopping, respectively. These two quantities are combined
into an effective irradiation diffusivity that depends on
the relative magnitudes of D�e and D�n, which in turn is a
function of the ratio of the fission rates in the two phases
of the inhomogeneous medium.

The analysis for the U, Mo in Al fuel is applicable to
similar dispersion fuels with different materials. Fig. 9
depicts three varieties of dispersion fuels. Each has a spher-
ical fuel particle ranging in diameter from 50–200 lm. Sur-
rounding each is an annulus 8–10 lm wide that is
irradiated by fission fragments from the fuel particle. On
the left is the system that has been used as a vehicle for
the present work.. In addition to the U, Mo alloy fuel
sphere, a (U, Mo)Al3 reaction product annulus of varying
thickness also generates fission products, although at a
lower rate than the central sphere.

In the center of Fig. 9 is MOX fuel fabricated by
mechanically blending powders of PuO2 and UO2. After
sintering, a compact with a PuO2 dispersed phase and a
UO2 matrix results. Fission-gas transport in MOX fuel is
accelerated in the ff-irradiated layer surrounding the pluto-
nia particles. Very large fuel-to-matrix fission rate ratios
would be expected in MOX fuel, with nearly all of the fis-
sions occurring in the plutonia particles rather than in the
UO2 matrix. Fission-gas diffusion from the PuO2 particles
in the surrounding UO2 in cold regions of the pellet would
be significantly affected by the position-dependent D* exte-
rior to the fuel kernel.

The right-hand diagram in Fig. 9 shows the irradiated
zones in the inert-matrix fuel described by Chauvin et al.
[8]. In addition to fissioning, 241Am emits alpha-particles,
whose range in the matrix is about twice that of the fission



Fig. 9. Three types of dispersion fuels – the central fissile kernel is <100 lm diameter.
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fragments. The 238Pu recoil that accompanies the alpha-
particle decay process deposits considerable energy in a
very narrow band around the fuel particle.

In all three cases shown in Fig. 9, the initial sharp
demarcation between the fissile dispersed phase and the
nonfissile matrix disappears with burnup. Understanding
the kinetics of the growth of the aluminide reaction prod-
uct at the expense of the U, Mo fuel sphere is the motiva-
tion for this work.

During irradiation of MOX fuel, plutonium diffuses into
the UO2 matrix and the initial interface between the two
oxides is smeared out. This results in a region similar to
the aluminide reaction-product layer in the research-
reactor dispersion fuel. Given the chemical similarity of
the materials in the dispersed/matrix combination of the
inert-matrix fuel in Fig. 9, migration of americium origi-
nally in the fuel sphere into the matrix would be expected.
All three combinations develop a zone containing the fissile
element surrounding the original sphere.
Appendix A. Relation of fission rate to energy deposition rate

In an infinite, homogeneous medium, energy deposition
at any point results from slowing-down of ffs originating in
a sphere of radius l, the range of the ffs, around the point.
Fig. A1 shows this geometry, with the central point repre-
sented by an imaginary sphere of radius s. The probability
that a ff produced in the annular volume element
sphere radius μ

annulus volume  dV = 4πr2dr

sphere radius s

Fig. A1. Geometry for determination of energy deposition from fission in
an infinite medium.
dV = 4pr2dr intersects the central sphere is ps2/4pr2. The
rate at which ffs from dV intersect the central sphere is

d _N ¼ ps2

4pr2
_F 4pr2dr ¼ ps2 _F dr:

The average distance traveled by the ff in the center sphere
is the average chord length, 4/3s. The energy deposited
over this distance is 4/3sS, where S is the stopping power
at the energy of the ff reaching the central sphere. The rate
of energy deposition per unit volume in the central sphere
due to ffs originating in the annular volume dV is

d _E ¼ 4=3sS
4=3ps3

d _N ¼ S
ps2

ps2 _F dr ¼ S _F dr:

Integrating over the radius of the large sphere

_E
_F
¼
Z l

0

Sdr;

which applies independently to electronic and nuclear
stopping.
Appendix B. Calculation details

Shown here are the detailed steps for computing the
energy of a ff at a point in region 2 following passage
through portions of one or both phases. The limits of the
integrals upon which the energy deposition rate is based
are also explained. Medium 1 is a U, Mo alloy sphere with
0.2 atom fraction Mo. The radius of the sphere is 1.2
in units of the ff range in medium 1. Medium 2 is the
product of the reaction of medium 1 with aluminum,
(U0.8Mo0.2)Al3. Enhancement of the diffusion coefficient
due to ffs from the central sphere is restricted to an annulus
whose thickness is equal to the range of ffs in the reaction
product.
B.1. Zone 1, small-q

Fig. B1 depicts a ff created at point G heading in the
direction of point F. The location of point G is fixed by



Fig. B2. Trajectories of ffs emitted from zone 2C.

Fig. B1. ff Created at point G in zone 1 and stopping at point F in
region 2.
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its radial distance r from point F and polar angle u with
respect to reference line FO.

First, the energy EF at point F of a ff created at point G
is determined. The ff travels a distance GK in zone 1 and
enters region 2 at point K with energy EK, which is deter-
mined from SRIM. The path length through medium 1 is
GK = r � KF = r � Q�, where Q� is the function of u
given by the third equation in Table 2. GK can also be
expressed as the difference in the projected ranges of the
ff at point G (equal to the birth-energy range l1, or in
dimensionless terms, unity) and at point K, written as
PR1(EK). Equating these two expressions for GK gives

PR1ðEKÞ ¼ 1þ Q� � r; ðB1Þ
which serves to determine EK.

After moving the length KF in region 2, the ff energy is
determined by KF = PR2(EK) � PR2(EF), or

PR2ðEFÞ ¼ PR2ðEKÞ � Q�: ðB2Þ
From which EF is obtained.

The calculation based on Eqs. (B1) and (B2) ceases to
apply at a maximum r value for which EF = 0. rmax is
obtained by setting the left-hand side of Eq. (B2) equal
to zero and solving for the corresponding value of EK.
Using this energy in Eq. (B1) gives rmax rather than r. This
is shown as the symbol Z in Table 2.

The above calculation extends to a maximum u of
\HFO = cos�1W, where W is the 5th equation in Table
3. Thereafter, rmax follows the arc of the circle rather than
the dashed curve in Fig. B1. The segment HF intersects the
circle at point K 0. The lengths of the segments HF and K 0F
are Q+ and Q�, respectively. Q± is given by the 3rd for-
mula in Table 3 in which cosu is replaced by W. The travel
distance in medium 1, HK 0 = HF � K 0F = Q+ � Q�. In
terms of projected ranges, K 0F = PR2(EK) because the ff
energy at point F is zero, and HK 0 = 1 � PR1(EK). This
leads to the equations:

1� PR1ðEKÞ ¼ Qþ � Q� and PR2ðEKÞ ¼ Q�: ðB3Þ
When Q+ and Q� are express by the 3rd formula in Table 3
and the resulting equations solved for W, the 5th pair of
equations in Table 3 is obtained. These must be solved
simultaneously for EK and W.

The maximum angle from which ffs created in zone 1
can reach point F is labeled as the tangent in Fig. A1.
The cosine of this maximum angle is denoted by X in Table
3. For polar angles between cos�1W and cos�1X, rmin for
zone 1 remains the same (i.e., Q�) but rmax lies along the
arc of the circle rather than on the dashed curve. For polar
angles in this range, rmax = Q+.

B.2. Zone 1, large-q

In this range of q, there is no discontinuity in the
formula for rmax as there is in the small-q range analyzed
above. rmax is given by the method labeled Z in Table 2.
Only the maximum angle formula differs from that in the
small-q range; X is replaced by Y. The calculation of the
ff energy at location F (EF) is identical to that given for
the small-q range described previously.

B.3. Zone 2C

This ff-generation zone, shown in the lower diagram of
Fig. 2, is present only for points F in the small-q range.
As shown in greater detail in Fig. B2, ffs originating at
point G in zone 2C initially travel through medium 2, enter
medium 1 at point H, exit at point K, and complete their
trajectory to point F through medium 2.

This diagram shows one quarter of the circle represent-
ing zone 1 and an arc of a dashed circle representing the
range of ffs in medium 2 centered on point F. Zone 2C is
the shaded area cut off from a direct view of point F by
a portion of zone 1. Shown are three rays from point F
to the arc AGS, which is the locus of rmax for this zone.
The formulas for U in Table 3 give the equations needed
to determine rmax (i.e., GF). Starting from point F, where
the ff stops, EK is obtained from Table 2 for the projected
range KF, which is given by Q� in Table 3. The projected
range at point H equals the projected range at point K
(both in medium 1) plus the path length HK = Q+ � Q�.
From PR1(EH), the energy of the ff at point H is
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determined from the appropriate SRIM table. The length
of the segment GH is the range of the birth-energy ff in
medium 2 less the projected range in the same medium at
point H, namely PR2(EH). Adding the length of
HF = Q+ gives, as a function of polar angle u, the maxi-
mum distance in zone 2C from which ffs can reach point
F. The locus of these points is the arc AGS.

The angular range of rmax in zone 2C begins at
\SFO = cos�1W. This angle is the same as \HFO in
Fig. B1, which has been considered above.

B.4. Zones 2A and 2B

The geometry of these two zones is straightforward. X
and Y are the cosines of the angles BFO in the diagrams
in Fig. 3.
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